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We prove that for /EL,,[-I,I], O<p<1 the modulus of smoothness
TkU; A")",,, introduced by Ivanov and Ditzian--Totik modulus of smoothness
(J)~(f, n- I)" are equivalent. 'I' 1995 Academic Press. Inc.

1. INTRODUCTION

The modulus of smoothness rk(j, d,,)/,./, is defined by

where the local L p modulus of continuity is defined by

Here k, n EN-the set of natural numbers,

(1.1 )

and the finite difference (57,/(x) is defined as

k (k)r~o (_I)k-r r f(x+rh)
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if x, x + kh E [ - I, I] and as 0, otherwise.
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This modulus was introduced by Ivanov in [5]. If cp(x) = (I - X
2

) 1/2 the
Ditzian-Totik modulus of smoothness offE L,,[ -1, 1] is defined by

(JJ~(j, n -I)" = sup IILt;''!'I' J( .)II L?[ -1.1]
()<h~n--I

Lt
k

. _ {,to (.~ 1)'~' e)fl X - kh~lx)/2 Hh~lx)),
/"1'1\)- x ±klup(x)/2 E [-I, I]

0, otherwise.

( 1.2)

For I ~p < ce the equivalence between moduli (l.l ) and (1.2) was proved via
the K-functional (see [4,6]). However, w~(f, n 1)1' cannot be equivalent to
the appropriate K-functional when 0 <p < 1. Our main result is the following

THEOREM 1. Let kEN, 0 < p < 1. Then for every f E L,,[ - I, I] and
n ~ M (with M a constant depending only 0/1 p and k) there are positive
constants C 1 and c2 , dependent only on p and k, such that

kIf, .-1):< (j'''):< k(r -I)C IWtp,11 p-.....::::Tk ,LJ n .l',p-...::::C2 W q>.I,J1 /" (1.3 )

COROLLARY. For O<iX<k, fEL,,[ -I, I], O<p~x the following are
equivalent

(I) £"U\ = (n')

(2) Tk(f, Lt,,)I'.1' = O(n-')

(3) (JJ~(f,II-I)I'=O(n-(X),

where £,'(f)" denotes the best L" approximation off by algebraic polyno­
mials of II tlz degree.

The case 1~p ~ ce was considered by Ivanov and Ditzian and Totik
(see [4-6]). The case 0 < p < I follows from Theorem 1, [7], [8].
Recently, Ditzian et at. [3] has proved the equivalence (1) ¢> (3) when
o<p < I. This note gives the answer of their question about the relation
between Tk(f, Lt,,)f'.I' and w~(f, n -1)1' for 0 <p < I.

2. PROOF OF THEOREM

Let n be sufficiently large and fixed.
To prove Theorem 1 we shall use two direct estimations for approxima­

tion offunctionfEL,,[ -I, I], O<p< I by piecewise polynomial functions
Sk _ I.,,(x) and L"Cf, x). The function Sk -I.,,(x) is defined by

64081.1-11

for x E [x i _ I' x,), i = I, 2..... no, (2.1 )
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where Pi(x) is the algebraic polynomial of degree ~k - 1 which is the best
L p approximation talon the interval [Xi_ I,X;+I) and the knots {Xi} are
chosen to satisfy X o = -1, X i + 1 =xi +L1,,(x;), x"o= I, X i = -I for i<O and
Xi = I for i> no. It is clear that no = 0(n 2

).

The following estimation for approximation by Sk _ 1./1 was proved in [7]

III- Sk -1.1111 L p[ -l.l] ~ elk, p) Tk(f, 180 .1 ,,)p.p, (2.2 l

where c( k, p) is a positive constant which depends only on p and k and
may differ at each occurence. We can take the constant 180 out of the
modulus as its was shown in (2.21 l in [9].

The function L,,(f, xl is defined by

L,.(f, x) = qj(x) for xE[';i_l,';;],i=I, ... ,n, (2.3 )

where q;(x) is the algebraic polynomial of degree ~k - I, which is a
near-best Lp approximation to I on the interval [¢' i _ 4' ';; + 3] n [ - I, I],
i = I, ..., 'I - 1, and the knots {¢' i} are defined in [I].

The following estimation for approximation by LIIUl was proved in [I]

III- L"U)lllp[-I.l] ~ elk, p) (j)~(j; 'I-I )1"

It is easy to see that for each IE L p [ -I, I], 0 <p < I

11 :?: 10. (2.4 l

and

for sufficiently large n E N (see [3, 8] l. Now we are ready to prove
Theorem I. We start with the proof of the first inequality in (1.3). Let
fJ = P(k land 0 < I/n < f3 < 1. Under this assumption we can choose I>
sufficiently small, such that

[X -khrp(xl/2, x + khrp(xl/2] ~ [X i - 2 , X i + d

The last imbedding follows from the fact that adjacent intervals [Xi _ I , x;]
have comparable lengths (see [6]). Using the inequality n:: xi)P ~ L xf
and the identity .17,rp(X)Sk_I.II(X) = .17,rptX)(Sk-l,,, - P;)(x) we have

(j)~(f, fJn -I)~

sup I r 1.1;"1'1\)(/- P;)(xW dx
O<h~/J1t I i= I x, 1

flO k

~ c(k, p) sup L L f IU- P;)(x - kJup(x)/2 + rhrp(x)W dx,
O<"~/JII-I i~l r~O D

(2.6)

where D = [Xi I' X;] n {X I x±khrp(xl/2E [-1, I]}.
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According to (2.1) after simple change of variables x + jhcp(x)/2 = y for
jE [ -k, k] in the integral in (2.6) it is easy to verify that dx = III dy where
III ~ 2. From (2.5) and (2.6) we obtain

"0

w~(f,pn-I)~~e(k,p)I II/-Pi"~p[x;_"xi+d
i~ 1

~ c(k, p) III- Sk _1.,,11 ~ ~ elk, p) Tk(j, ,1")~.1' (2.7)

In the last two inequalities we used (2.1), (2.2), the fact that best L p

approximation to Ion the intervals [Xi_I,X i ], [X i - 2 ,X i _ l ] and
[Xi' X i + I] is a near-best L p approximation to I on the interval
[x i _ 2, Xi + 1] with a constant, dependent only on p and k (see [2]) and the
method of proving of (2.2) (see [7]).

In order to complete the proof of the left inequality in (1.3) we have

w~(j, n-l)~ = w~(j, p(np)-l)~ ~w~(j, p[np] -I)~

~e(k,p) Tk(j, A["IJ])~.p~e(k,p)Tk(j, ,,1,,);;.1'

The proof of second inequality in ( 1.3) is similar. Let y = y( k) and 0 < y < I.
From the fact that we can take the constant out of the modulus TkU; ,1")1'."
([9]) we get

TkU; ,1")~.1' ~ elk, p) Tk(j, y,1")~.,,

II ~I 1 )'.1,,(x)

~c(k,p) I r 2, . S Ib7,U-q,)(x)I"dhdx
i = I ~I- I I L1,,( ...\) - )'/1'1(:\" j

k' 1
~ elk, p) '~l J~)~~' I 2y ,1,,(x) tu.X) IU- qi)(X +)hW' dh dx,

(2.8)

where Eli, x) = [ -}' A,,(x), y J,,(x)] n {Il I x + kll E [ -1,1]}, for fixed
x E Ui _ I' (i]. We chose }' sufficiently small such that

Let us define

and hE EU, x).

for 1~ i ~ n.

From the definitions of the points gil (see Lemma 3.1 in [1]) and ,1,,(x)

it follows that (¢i - ¢i-I) )'i ~ e, where e is a constant, independent of n.
Using this observation and (2.8) we get

11 k ;:

Tk(j, ,1")~.P ~ elk, p) I I Air L. IU- qi)(X + )h)l" dh dx (2.9)
i= 1 j=O ~I-l E(l.:»:)
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After simple change of variables x +jh = y, h = v and changing the order of
integration in (2.9) we obtain

TkU:AII)~.I,~c(k,p)L ('i-'i-I)).illf-qillj'lg_2,~,+tJ
i= I

~c(k,p) L Ilf-qilll;.p[~;_,.(;+I]·
i=l

(2,10)

Now the proof of (1.3) follows from (2.10), (2.4) and (4.10) In [I). This
completes the proof of Theorem I.
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