Note

A Note on Two Moduli of Smoothness

GANCHO T. TACHEV

Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, 1421 Sofia, Bulgaria

Communicated by Zeev Ditzian

Received November 2, 1992; accepted in revised form December 19, 1993

We prove that for $f \in L_p[-1, 1]$, $0 the modulus of smoothness <math>\tau_k(f, A_n)_{p,p}$ introduced by Ivanov and Ditzian-Totik modulus of smoothness $\omega_{\phi}^k(f, n^{-1})_p$ are equivalent. (i) 1995 Academic Press, Inc.

1. INTRODUCTION

The modulus of smoothness $\tau_k(f, \Delta_n)_{p,p}$ is defined by

$$\tau_k(f, \Delta_n)_{p,p} = \|\omega_k(f, \cdot, \Delta_n(\cdot))_p\|_{L_p[-1,1]},$$
(1.1)

where the local L_p modulus of continuity is defined by

$$\omega_k(f, x, \Delta_n(x))_p = ((2\Delta_n(x))^{-1} \int_{-\Delta_n(x)}^{\Delta_n(x)} |\delta_h^k f(x)|^p \, dh)^{1/p}.$$

Here k, $n \in N$ —the set of natural numbers,

$$\varDelta_n(x) = n^{-1}(1-x^2)^{1/2} + n^{-2}, \qquad f \in L_p[-1,1], \, 0$$

and the finite difference $\delta_h^k f(x)$ is defined as

$$\sum_{r=0}^{k} (-1)^{k-r} \binom{k}{r} f(x+rh) \quad \text{if} \quad x, x+kh \in [-1, 1] \text{ and as } 0, \text{ otherwise.}$$

136

0021-9045/95 \$6.00

Copyright δ^2 1995 by Academic Press, Inc. All rights of reproduction in any form reserved.

NOTE

This modulus was introduced by Ivanov in [5]. If $\varphi(x) = (1 - x^2)^{1/2}$ the Ditzian-Totik modulus of smoothness of $f \in L_p[-1, 1]$ is defined by

$$\omega_{\varphi}^{k}(f, n^{-1})_{p} = \sup_{0 < h \leq n^{-1}} \|\Delta_{h\varphi(\cdot)}^{k} f(\cdot)\|_{L_{p}[-1,1]}$$

$$\Delta_{h\varphi(x)}^{k} = \begin{cases} \sum_{r=0}^{k} (-1)^{k-r} \binom{k}{r} f(x - kh\varphi(x)/2 + rh\varphi(x)), & (1.2) \\ x \pm kh\varphi(x)/2 \in [-1,1] \\ 0, & \text{otherwise.} \end{cases}$$

For $1 \le p < \infty$ the equivalence between moduli (1.1) and (1.2) was proved via the K-functional (see [4,6]). However, $\omega_{\varphi}^{k}(f, n^{-1})_{p}$ cannot be equivalent to the appropriate K-functional when 0 . Our main result is the following

THEOREM 1. Let $k \in N$, $0 . Then for every <math>f \in L_p[-1, 1]$ and $n \ge M$ (with M a constant depending only on p and k) there are positive constants c_1 and c_2 , dependent only on p and k, such that

$$c_1 \omega_{\varphi}^k(f, n^{-1})_p \leqslant \tau_k(f, \Delta_n)_{p,p} \leqslant c_2 \omega_{\varphi}^k(f, n^{-1})_p.$$
(1.3)

COROLLARY. For $0 < \alpha < k$, $f \in L_p[-1, 1]$, 0 the following areequivalent

- (1) $E_n(f)_p = (n^{-\alpha})$
- (2) $\tau_k(f, \Delta_n)_{p,p} = O(n^{-\alpha})$ (3) $\omega_{\varphi}^k(f, n^{-1})_p = O(n^{-\alpha}),$

where $E_n(f)_p$ denotes the best L_p approximation of f by algebraic polynomials of nth degree.

The case $1 \le p \le \infty$ was considered by Ivanov and Ditzian and Totik (see [4-6]). The case 0 follows from Theorem 1, <math>[7], [8]. Recently, Ditzian *et al.* [3] has proved the equivalence $(1) \Leftrightarrow (3)$ when 0 . This note gives the answer of their question about the relationbetween $\tau_k(f, \Delta_n)_{p,p}$ and $\omega_{\omega}^k(f, n^{-1})_p$ for 0 .

2. PROOF OF THEOREM 1

Let n be sufficiently large and fixed.

To prove Theorem 1 we shall use two direct estimations for approximation of function $f \in L_p[-1, 1]$, 0 by piecewise polynomial functions $S_{k-1,n}(x)$ and $L_n(f, x)$. The function $S_{k-1,n}(x)$ is defined by

$$S_{k-1,n}(x) = P_i(x),$$
 for $x \in [x_{i-1}, x_i), i = 1, 2, ..., n_0,$ (2.1)

640 81 1-11

where $P_i(x)$ is the algebraic polynomial of degree $\leq k - 1$ which is the best L_p approximation to f on the interval $[x_{i-1}, x_{i+1})$ and the knots $\{x_i\}$ are chosen to satisfy $x_0 = -1$, $x_{i+1} = x_i + \Delta_n(x_i)$, $x_{n_0} = 1$, $x_i = -1$ for i < 0 and $x_i = 1$ for $i > n_0$. It is clear that $n_0 = O(n^2)$.

The following estimation for approximation by $S_{k-1,n}$ was proved in [7]

$$\|f - S_{k-1,n}\|_{L_{p}[-1,1]} \leq c(k,p) \,\tau_{k}(f, 180 \,\varDelta_{n})_{p,p}, \tag{2.2}$$

where c(k, p) is a positive constant which depends only on p and k and may differ at each occurrence. We can take the constant 180 out of the modulus as its was shown in (2.21) in [9].

The function $L_n(f, x)$ is defined by

$$L_n(f, x) = q_i(x) \quad \text{for} \quad x \in [\xi_{i-1}, \xi_i], i = 1, ..., n, \quad (2.3)$$

where $q_i(x)$ is the algebraic polynomial of degree $\leq k-1$, which is a near-best L_p approximation to f on the interval $[\xi_{i-4}, \xi_{i+3}] \cap [-1, 1]$, i = 1, ..., n-1, and the knots $\{\xi_i\}$ are defined in [1].

The following estimation for approximation by $L_n(f)$ was proved in [1]

$$\|f - L_n(f)\|_{L_p[-1,1]} \le c(k,p) \,\omega_{\varphi}^k(f,n^{-1})_p, \qquad n \ge 10.$$
(2.4)

It is easy to see that for each $f \in L_p[-1, 1], 0$

$$\omega_{\varphi}^{k}(f, n^{-1})_{p} \leq c(k, p) \|f\|_{p} \quad \text{and} \quad \tau_{k}(f, \Delta_{n})_{p, p} \leq c(k, p) \|f\|_{p} \quad (2.5)$$

for sufficiently large $n \in N$ (see [3, 8]). Now we are ready to prove Theorem 1. We start with the proof of the first inequality in (1.3). Let $\beta = \beta(k)$ and $0 < 1/n < \beta < 1$. Under this assumption we can choose β sufficiently small, such that

$$[x - kh\varphi(x)/2, x + kh\varphi(x)/2] \subseteq [x_{i-2}, x_{i+1}]$$
 for $x \in [x_{i-1}, x_i]$.

The last imbedding follows from the fact that adjacent intervals $[x_{i-1}, x_i]$ have comparable lengths (see [6]). Using the inequality $(\sum x_i)^p \leq \sum x_i^p$ and the identity $\Delta_{h\varphi(x)}^k S_{k-1,n}(x) = \Delta_{h\varphi(x)}^k (S_{k-1,n} - P_i)(x)$ we have

$$\omega_{\varphi}^{k}(f,\beta n^{-1})_{p}^{p} = \sup_{0 < h \leq \beta n^{-1}} \sum_{i=1}^{n_{0}} \int_{x_{i-1}}^{x_{i}} |\Delta_{h\varphi(x)}^{k}(f-P_{i})(x)|^{p} dx$$

$$\leq c(k,p) \sup_{0 < h \leq \beta n^{-1}} \sum_{i=1}^{n_{0}} \sum_{r=0}^{k} \int_{D} |(f-P_{i})(x-kh\varphi(x)/2+rh\varphi(x))|^{p} dx,$$

(2.6)

where $D = [x_{i-1}, x_i] \cap \{x \mid x \pm kh\varphi(x)/2 \in [-1, 1]\}.$

According to (2.1) after simple change of variables $x + jh\varphi(x)/2 = y$ for $j \in [-k, k]$ in the integral in (2.6) it is easy to verify that dx = |J| dy where $|J| \leq 2$. From (2.5) and (2.6) we obtain

$$\omega_{\varphi}^{k}(f,\beta n^{-1})_{p}^{p} \leq c(k,p) \sum_{i=1}^{n_{0}} \|f - P_{i}\|_{L_{p}[x_{i-2},x_{i+1}]}^{p} \leq c(k,p) \|f - S_{k-1,n}\|_{p}^{p} \leq c(k,p) \tau_{k}(f,\Delta_{n})_{p,p}^{p}$$
(2.7)

In the last two inequalities we used (2.1), (2.2), the fact that best L_p approximation to f on the intervals $[x_{i-1}, x_i]$, $[x_{i-2}, x_{i-1}]$ and $[x_i, x_{i+1}]$ is a near-best L_p approximation to f on the interval $[x_{i-2}, x_{i+1}]$ with a constant, dependent only on p and k (see [2]) and the method of proving of (2.2) (see [7]).

In order to complete the proof of the left inequality in (1.3) we have

$$\omega_{\varphi}^{k}(f, n^{-1})_{p}^{p} = \omega_{\varphi}^{k}(f, \beta(n\beta)^{-1})_{p}^{p} \leq \omega_{\varphi}^{k}(f, \beta[n\beta]^{-1})_{p}^{p}$$
$$\leq c(k, p) \tau_{k}(f, \Delta_{[n\beta]})_{p, p}^{p} \leq c(k, p) \tau_{k}(f, \Delta_{n})_{p, p}^{p}$$

The proof of second inequality in (1.3) is similar. Let $\gamma = \gamma(k)$ and $0 < \gamma < 1$. From the fact that we can take the constant out of the modulus $\tau_k(f, \Delta_n)_{p,p}$ ([9]) we get

$$\begin{aligned} \tau_{k}(f, \Delta_{n})_{p,p}^{p} &\leq c(k, p) \ \tau_{k}(f, \gamma \Delta_{n})_{p,p}^{p} \\ &\leq c(k, p) \ \sum_{i=1}^{n} \ \int_{\xi_{i-1}}^{\xi_{i}} \frac{1}{2\gamma \ \Delta_{n}(x)} \int_{-\gamma A_{n}(x)}^{\gamma A_{n}(x)} |\delta_{h}^{k}(f-q_{i})(x)|^{p} \ dh \ dx \\ &\leq c(k, p) \ \sum_{i=1}^{n} \ \sum_{j=0}^{k} \ \int_{\xi_{i-1}}^{\xi_{i}} \frac{1}{2\gamma \ \Delta_{n}(x)} \int_{E(i,x)} |(f-q_{i})(x+jh)|^{p} \ dh \ dx, \end{aligned}$$

$$(2.8)$$

where $E(i, x) = [-\gamma \Delta_n(x), \gamma \Delta_n(x)] \cap \{h \mid x + kh \in [-1, 1]\}$, for fixed $x \in [\xi_{i-1}, \xi_i]$. We chose γ sufficiently small such that

 $x + kh \in [\xi_{i-2}, \xi_{i+1}],$ for $x \in [\xi_{i-1}, \xi_i]$ and $h \in E(i, x).$

Let us define

$$\lambda_i = \max\{(2\gamma \mathcal{A}_n(\xi_{i-1}))^{-1}, (2\gamma \mathcal{A}_n(\xi_i))^{-1}\} \quad \text{for} \quad 1 \le i \le n.$$

From the definitions of the points $\{\xi_i\}$ (see Lemma 3.1 in [1]) and $\Delta_n(x)$ it follows that $(\xi_i - \xi_{i-1}) \lambda_i \leq c$, where c is a constant, independent of n. Using this observation and (2.8) we get

$$\tau_k(f, \Delta_n)_{p,p}^p \le c(k, p) \sum_{i=1}^n \sum_{j=0}^k \lambda_i \int_{\xi_{i-1}}^{\xi_i} \int_{E(i, x)} |(f - q_i)(x + jh)|^p \, dh \, dx \quad (2.9)$$

After simple change of variables x + jh = y, h = v and changing the order of integration in (2.9) we obtain

$$\tau_{k}(f, \Delta_{n})_{p,p}^{p} \leq c(k, p) \sum_{i=1}^{n} (\xi_{i} - \xi_{i-1}) \lambda_{i} \|f - q_{i}\|_{L_{p}[\xi_{i-2}, \xi_{i+1}]}^{p}$$

$$\leq c(k, p) \sum_{i=1}^{n} \|f - q_{i}\|_{L_{p}[\xi_{i-2}, \xi_{i+1}]}^{p}.$$
(2.10)

Now the proof of (1.3) follows from (2.10), (2.4) and (4.10) in [1]. This completes the proof of Theorem 1.

ACKNOWLEDGMENTS

The author expresses his gratitute to Professor K. G. Ivanov and to Professor Z. Ditzian for the valuable suggestion and helpful remarks.

REFERENCES

- 1. R. A. DEVORE, D. LEVIATAN, AND X. M. YU Polynomial approximation in L_p (0), Constr. Approx. 8 (1992), 187-201.
- 2. R. A. DEVORE AND V. POPOV, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414.
- 3. Z. DITZIAN, D. JIANG, AND D. LEVIATAN, Inverse theorem for best polynomial approximation in L_p , 0 ,*Proc. Amer. Math. Soc.*, to appear.
- 4. Z. DITZIAN AND V. TOTIK, "Moduli of Smoothness," Springer Series in Computational Mathematics, Vol. 9, Springer-Verlag, New York/Berlin.
- 5. K. G. IVANOV, Direct and converse theorem for the best algebraic approximation in C[-1, 1] and $L_{\rho}[-1, 1]$, C. R. Acad. Bulgare Sci. 33 (1980), 1309–1312.
- K. G. IVANOV, A characterization of weighted Peetre K-functionals, J. Approx. Theory 56 (1989), 185-211.
- 7. G. T. TACHEV, A direct theorem for the best algebraic approximation in $L_p[-1, 1]$, (0 , Math. Balk. 4 (1990), 381-390.
- 8. G. T. TACHEV. A converse theorem for the best algebraic approximation in $L_{\rho}[-1, 1]$, (0 , Serdica 17 (1991), 161–166.
- 9. G. T. TACHEV. Approximation by Kantorovich-Bernstein polynomials in L_p (0 -metric, Approx. Theory Appl., to appear.

